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Abstract: Bluetongue virus (BTV) is the etiologic agent of a non-contagious arthropod-borne disease
transmitted to wild and domestic ruminants. BTV induces a large panel of clinical manifestations
ranging from asymptomatic infection to lethal hemorrhagic fever. Despite the fact that BTV has been
studied extensively, we still have little understanding of the molecular determinants of BTV virulence.
In our report, we have performed a comparative yeast two-hybrid (Y2H) screening approach to
search direct cellular targets of the NS4 virulence factor encoded by two different serotypes of BTV:
BTV8 and BTV27. This led to identifying Wilms’ tumor 1-associated protein (WTAP) as a new
interactor of the BTV-NS4. In contrast to BTV8, 1, 4 and 25, NS4 proteins from BTV27 and BTV30
are unable to interact with WTAP. This interaction with WTAP is carried by a peptide of 34 amino
acids (NS422−55) within its putative coil-coiled structure. Most importantly, we showed that binding
to WTAP is restored with a chimeric protein where BTV27-NS4 is substituted by BTV8-NS4 in the
region encompassing residue 22 to 55. We also demonstrated that WTAP silencing reduces viral titers
and the expression of viral proteins, suggesting that BTV-NS4 targets a cellular function of WTAP to
increase its viral replication.

Keywords: Bluetongue virus; NS4; WTAP; protein–protein interaction

1. Introduction

Bluetongue virus (BTV) is the etiological agent of the Bluetongue disease, a non-
contagious arbovirus that affects a wide range of wild and domestic ruminants. It is
transmitted by blood-feeding midges of the genus Culicoides. Up to 2008, 24 serotypes had
been principally identified by a virus neutralization test. This group of serotypes, named
as classical BTV serotypes (BTV1–24), can infect a broad spectrum of ruminants (especially
sheep) and the disease is associated with ulcer in the oral cavity and upper gastrointestinal
tract, hemorrhagic fever, necrosis of the skeletal and cardiac muscle and oedema of the
lungs [1]. Since 2008, progress in molecular diagnosis and high-throughput sequencing
approach (next generation sequencing) have led to the discovery of an increased number of
new strains within serotypes but also new serotypes of BTV. These newly identified BTV-
serotypes are characterized by a low (sometimes even an absence of) pathology/virulence,
their capacity to infect only small ruminants such as goats and, for some of them, their direct
transmission [2,3]. Today, 36 serotypes have been identified; the serotypes 25 to 36 are called
small ruminants adapted serotypes, non-transmitted by Culicoides [4]. Consequently, this
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non-classical group of BTV serotypes (BTV25-36) is also named “atypical” BTVs, distinct
from the classical BTV1–24.

The Bluetongue virus particle is icosahedral and organized as a triple-layered capsid
that incorporates 10 double-stranded RNA (dsRNA) segments encoding seven structural
(VP1 to VP7) and five, or possibly six, non-structural (NS1 to NS4, NS3A and possibly
NS5) proteins [5–7]. All these viral genomic segments are associated with the replication
complex, which is composed of VP1 (RNA-dependent RNA polymerase), VP4 (capping
enzyme including methyltransferase), VP6 (RNA-dependent ATPase and helicase) and
enclosed by VP3 (subcore) and VP7 (core) [8]. The outer capsid VP5 and VP2 are involved
in cell attachment and viral entry [9,10]. VP2 is the main target of neutralizing antibodies
and determines the serotype. Non-structural proteins participate in viral replication [11],
protein synthesis [12], assembly, maturation and export from the infected cells [13–17],
and neutralization of cellular factors, notably those involved in the host antiviral response.
Indeed, both NS3 and NS4 have major roles in counteracting the innate immune response,
and in particular the type I interferon (IFN-α/β) [7,18–21]. Moreover, a recent study
suggests that NS4 and NS3 could act together to enhance STAT1 interference [22].

NS4 is encoded from a second reading frame (+1) carried by segment 9, which also
encodes for VP6. BTV-NS4 is a small protein, with 77–79 amino acids in length, that is
conserved among orbiviruses (African horse sickness virus, Great Island virus, Epizootic
hemorrhagic disease virus). Depending on the viral cycle and/or experimental conditions,
NS4 has a variable intracellular localization. Mostly cytoplasmic in the early stages of
infection, it is preferentially localized within the nucleoli 24 h post-infection due to a
nucleolar addressing motif present at its N-terminal region [6,7]. The presence of NS4
confers an advantage for virus replication in cells pre-treated with IFN suggesting that NS4
is an antagonist of the IFN-α/β response and a key determinant of the BTV virulence [7,19].
This replicative advantage has also been observed in the African horse sickness virus [23,24].
Remarkably, the NS4 protein appears to block promoters other than those related to the
IFN-α/β response, suggesting a more general shutoff of the host gene expression [19].

Despite the fact that BTV has been used extensively as a model to study the Orbivirus
replication cycle and structural biology, only a few interactions at the molecular level
between viral and cellular proteins have been described so far. Moreover, classical BTV
serotypes are very different from the atypical BTVs as regards their pathogenicity, viru-
lence and capacity to infect and spread to mammal(s) host(s). Thus, we still have little
understanding of the molecular determinants of their virulence and the evolutionary and
molecular processes that affect changes in the host range. For example, BTV8 is virulent in
sheep but can also induce clinical signs in cattle [25,26] whereas BTV27 infects exclusively
goats without causing any symptoms [27].

In our study, we have used the yeast two-hybrid (Y2H) system to search direct cellular
partners of the BTV-NS4 virulence factors encoded by BTV8 and BTV27. This led to
the identification of nine new targets of BTV-NS4, including Wilms’ tumor 1-associated
protein (WTAP). WTAP is involved in the N6-methyladenosine (m6A) methylation of RNA,
one of the most ubiquitous and abundant modifications in both coding and noncoding
RNAs [28,29]. Interestingly, NS4 protein encoded by BTV8, BTV1, BTV4 and BTV25
interacted with WTAP whereas BTV27-NS4 and BTV30-NS4 were unable to achieve this.
The use of a systemic deletion-based mapping procedure as well as a BTV27/8-NS4 chimeric
protein led us to define the WTAP and NS4 binding domains. Finally, we provided
unprecedented evidence for the crucial role of WTAP in BTV replication.

2. Materials and Methods
2.1. Cell Lines and Viral Infections

HEK-293T cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM;
Gibco-Invitrogen) containing 10% fetal bovine serum, 100 units/mL penicillin, 1 mM
sodium pyruvate and 100 µg/mL streptomycin at 37 ◦C and 5% CO2. Bovine umbilical cord
endothelial cells (BUcEC, kindly provided by Dr. Anne-Claire Lagrée) were immortalized
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as previously described [30] and maintained in Opti-MEM (Gibco-Invitrogen) containing
5% fetal bovine serum and 0.4% gentamycin at 37 ◦C and 5% CO2. BTV8 strain (isolated in
the French Ardennes in 2006 [31]) was amplified and titrated on BSR. BTV infection was
analyzed at 24 h by western blotting using specific NS3 (kindly provided by Dr. Frederick
Arnaud) [32] and VP5 antibodies (Mab 10AE12; Eurofins-Ingenasa).

2.2. Plasmid DNA Constructs

NS4-encoding sequences from three French BTV strains (BTV8, 2006 [31]; BTV27,
Corsica 2014 [27]; BTV4, Corsica 2016 [33]) and two BTV strains kindly provided by Dr.
Martin Beer and Dr. Bernd Hoffmann (BTV25, Germany 2018 [34]; BTV30, Mongolia
2016 [3]) were amplified by two-step RT-PCR (Roche) from purified infected-cell RNAs.
In contrast to others, BTV1-NS4 has been cloned from a plasmid (kindly provided by
Dr. Piet A. van Rijn) containing segment 9 of a BTV1 strain generated by reverse genet-
ics [35]. BTV-NS4 specific primers used for PCR were flanked with the Gateway® cloning
sites (5′-ggggacaactttgtacaaaaaagttggc-3’ and 5′-ggggacaactttgtacaagaaagttgg-3’). PCR
products were cloned by in vitro recombination into pDONR207 (BP reaction; Invitro-
gen) and their sequences were verified. ORFs encoding bovine WTAP and Coiled-coil
alpha-helical rod protein 1 (CCHCR1) were amplified from the MDBK cDNA library (see
Yeast two-hybrid screening procedure), then cloned in pDONR207, and sequence verified.
Goat WTAP was obtained by introducing six codon changes in the pDONR207-bovine
WTAP construct by site-directed mutagenesis following the manufacturer’s instructions
(QuikChange II site-directed mutagenesis, Agilent). The chimeric BTV27-NS422−55BTV8-NS4

construction was synthesized and cloned into pDONR207 by GeneCust company (service
delivery). ORF coding sequences were subsequently transferred by in vitro recombination
from pDONR207 into different Gateway®-compatible destination vectors following the
manufacturer’s recommendation (LR reaction, Invitrogen).

2.3. Yeast Two-Hybrid (Y2H) Screening Procedure

Our Y2H protocol was largely inspired from the report of Vidalain et al. [36]. DNA
sequences encoding for NS4 proteins were transferred by in vitro recombination (LR cloning
reaction, Gateway® technology, Invitrogen) from pDONR207 into the Y2H vector pDEST32
(Invitrogen) in order to be expressed in fusion downstream of Gal4 DNA-binding domain
(Gal4-BD). Bait constructs were transformed into Y2H Gold yeast strain (Clontech) using a
standard Lithium/Acetate procedure and selected on a synthetic medium lacking leucine
(-L). Spontaneous transactivation of the HIS3 reporter gene by BTV-NS4 proteins was
determined on synthetic medium lacking histidine (-H) and supplemented with 3-amino-
1,2,4-triazole (3-AT). For each BTV NS4 protein, we evaluated at 5mM the appropriate
concentration of 3-AT preventing yeast growth in the absence of interacting prey protein. A
mating strategy was used for screening the bovine cDNA library cloned in the Gal4-AD
pDEST 22 vector (Invitrogen), previously transformed into the yeast strain Y187 (Clontech)
and selected on a synthetic medium lacking tryptophan (-W). The bovine cDNA library
is derived from the Madin-Darby bovine kidney (MDBK) cell line and its preparation
was subcontracted (Life Technologies). For each screen, 20–50 million yeast diploids were
produced and grown on selective medium -L, -W, -H supplemented with 5 mM of 3-AT.
After 6 days of culture, [His+] colonies were picked and purified over 3 weeks by culture
on selective medium to eliminate false-positives [37]. AD-cDNAs were amplified by PCR
from zymolyase-treated yeast colonies using primers that hybridize within the pDEST
22 regions flanking cDNA inserts. PCR products were sequenced, and cellular interactors
were identified by multiparallel BLAST analysis.

2.4. Gap Repair (GR)

The PCR products corresponding to the previously identified cellular preys were
also used to retest each interaction one by one in yeast following the gap-repair proce-
dure [38]. Using the same standard Lithium/Acetate procedure as mentioned above, 10 ng
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of linearized pPC86 empty vector was co-transformed with 3 µL of PCR product to allow
its recombinatorial repair in fresh Y2H Gold yeast cells expressing BD-fused BTV-NS4
proteins. Homologous recombination between the vector and the PCR product led to the
reconstitution of AD-fused cDNA and growth on -L, -W, -H medium + 5mM of 3-AT was
conditioned by physical interaction between BTV-NS4 and indicated cellular proteins.

To perform the refined mapping of NS4 and WTAP binding sites, we also used
the GR procedure. First, both forward and reverse PCR primers were designed ev-
ery 66 nucleotides along the BTV8-NS4 sequence, or every 150 nucleotides along the
WTAP sequence and were fused to specific tails allowing recombination in the Gal4-BD
or the Gal4-AD Y2H vector. The sequences of the specific tails in the Gal4-BD vector
were 5′-GAAGAGAGTAGTAACAAAGGTCAAAGACAGTTGACTGTATCGTCGAGG-
3′ and 5′-CCGCGGTGGCGGCCGTTACTTACTTAGAGCTCGACGTCTTACTTA-3′, and
5′-GATGAAGATACCCCACCAAACCCAAAAAAAGAGGGTGGGTCGAATCAA-3′ and
5′-CCGCGGTGGCGGCCGTTACTTACTTAGAGCTCGACGTCTTACTTA-3′ were used for
the Gal4-AD Y2H vector. Matrix combinations of forward and reverse primers were used to
amplify BTV8-NS4 and WTAP fragments by PCR. As described above, 10 ng of linearized
pPC86 or pDEST32 empty vector was co-transformed with 3 µL of PCR product to achieve
recombinatorial cloning by GR in yeast expressing BD-fused BTV8-NS4 or AD-WTAP.
Interactions with BTV8-NS4 and WTAP were tested by plating yeast cells on -L, -W, -H
medium and supplemented with 5 mM of 3-AT.

2.5. Co-Affinity Purification Experiments

To perform co-affinity purification experiments, ORFs encoding NS4 and WTAP or
fragments, or CCHCR1 were transferred from pDONR207 to either pDEST27 (Invitrogen)
or pCI-neo-3xFLAG expression vector to achieve GST and 3xFLAG fusion [39], respectively.
HEK-293T cells were dispensed in each well of a 6-well plate (2 × 106 cells), and 24 h later
transfected (JetPRIME; Polyplus) with 500 ng of each plasmid DNA per well. Two days post-
transfection, cells were collected in PBS and then incubated on ice in lysis buffer (20 mM
MOPS-KOH pH 7.4, 120 mM of KCl, 0.5% Igepal, 2 mM β-Mercaptoethanol, supplemented
with Complete Protease Inhibitor Cocktail (Roche)) for 20 min. Cell lysates were clarified
by centrifugation at 14,000× g for 30 min. For pull-down analysis, protein extracts were
incubated for 2 h at 4 ◦C on a spinning wheel with 30 µL of glutathione-sepharose beads
(Amersham Biosciences) to purify GST-tagged proteins. Beads were then washed 3 times
for 5 min with ice-cold lysis buffer and on a spinning wheel and, proteins were recovered
by boiling in denaturing loading buffer (Invitrogen).

2.6. Western Blot Analysis

Purified complexes and protein extracts were boiled at 95 ◦C for 5 min and resolved by
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) on 4–12% NuPAGE Bis–Tris gels with
BOLT MES SDS running buffer and transferred to a nitrocellulose membrane in wet condi-
tions (Invitrogen). GST and 3xFLAG-tagged proteins were detected with a rabbit polyclonal
anti-GST antibody (1:2500, Sigma-Aldrich) and a mouse monoclonal HRP-conjugated anti-
FLAG antibody (M2 1:10,000; Sigma-Aldrich), respectively. Specific antibodies were used
to detect endogenous WTAP (A301-436A 1:1000) and actine (A 3853 1:2500) and purchased
from Bethyl Laboratories and Sigma, respectively. Secondary anti-rabbit and anti-mouse
HRP-conjugated antibodies were purchased from Invitrogen (1:5000). Nitrocellulose mem-
brane was then incubated with a peroxidase substrate (Clarity™ Western ECL Substrate,
Biorad) and visualized with the ChemiDoc MP Imaging System (Biorad).

2.7. WTAP Silencing

BUcEC were transfected with siRNAs using JetPRIME (Polyplus) according to the man-
ufacturer’s instructions. Non-specific control and WTAP specific siRNAs were purchased
from GeneCust and used at a final concentration of 25 nM. For WTAP specific siRNAs, the
sequences used were 5′-CCAGCGAUCAACUUGUUAUTT-3′/5′-AUAACAAGUUGAUCG
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CUGGTT-3′ while 5′-UUCUCCGAACGUGUCACGUTT-3′/5′-ACGUGACACGUUCGGAG
AATT-3′ were used as a negative control and noted as siCTR. One day later, BUcEC were
infected with BTV8 (MOI = 0.01) for 24 h.

2.8. RT-qPCR in BUcEC

BUcEC were directly lysed in 0.35 mL of RLT buffer (QIAGEN) containing 1% 2-
Mercaptoethanol. Total RNA was extracted using RNeasy columns (QIAGEN) accord-
ing to the manufacturer’s instructions. RT-qPCR was performed using Quantifast SYBR
Green RT-PCR Kit (Qiagen) with 50 ng of total RNA and experimental or control primers.
The sequences of experimental primers targeting WTAP and the BTV segment 1 were
5′-CTACTCAGATCCAGTACCTCAAGCAA-3′ and 5′-CATTTTGGGCTTGTTCCAGTTT-3′,
and 5′-GTTCCGCGCTAAAAACGAGA-3′ and 5′-CCCTGGTGGAATGGTGAATC-3′, re-
spectively. Target transcripts were normalized to the control housekeeping gene, GAPDH,
and the sequences used were 5′-GGTCGGAGTGAACGGATTCG-3′ and 5′-ACTCCACCAC
ATACTCAGCA-3′. Reactions were performed using the LightCycler LC96 (Roche) and
expression levels were analyzed using LightCycler 96 SW1.1 (Roche). The expression of
WTAP and the BTV segment 1 were first normalized to the expression of GAPDH, then
to the target gene expression of siCTR samples to calculate 2−∆(∆CT) relative expression
values, as specified in the figure legend.

2.9. Statistical Analyses

Statistical significance was assessed using the statistical package in GraphPad Prism,
version 9.3.1. p-values are a result of unpaired two-tailed Student’s T test. Differences were
considered to be significant if p-value < 0.05 (*) or < 0.005 (**) or < 0.0005 (***).

3. Results
3.1. Mapping Cellular Interactors of the BTV-NS4 Protein

To identify cellular partners of BTV-NS4, a cDNA library originating from cattle
was screened by Y2H using full-length NS4 viral proteins from two serotypes (BTV8 and
BTV27) as baits. Each screen was performed by yeast mating to obtain a minimum of 30.106

diploids, a number that corresponds to 10-times the complexity of our cDNA library. A
total of 288 positive [His+] yeast colonies were recovered from these two screens (206 and
82 clones for BTV8-NS4 and BTV27-NS4, respectively) and cellular prey proteins were
identified by cDNA amplification, sequencing and multi-parallel BLAST analysis. Only
interactions supported by a minimum of 3 independent yeast colonies were conserved to
build the high-confidence interaction matrix displayed. Indeed, it has been shown that
interactions identified 3 or more times in a Y2H screening approach can be validated at
more than 80% by the affinity co-purification [40]. This represents a total of 11 interactions
(8 for BTV8-NS4 and 3 for BTV27-NS4) corresponding to 9 distinct cellular proteins (Table 1).
From this dataset, each cellular interactor was retested against BTV8-NS4 and BTV27-NS4
by transforming the PCR products (two for each cellular prey) in the presence of linearized
pPC86 vector to achieve recombinatorial cloning by gap-repair into fresh yeasts containing
the viral baits (Figure 1A). As expected, both BTV8 and BTV27-NS4 were able to interact
with PAWR and KANSL2 but we also found LUC7L and CCHCR1 as common interactors
of BTV-NS4. However, we confirmed that WTAP, AATF, KIF12, and BRD2 were serotype
8-specific but MAPK7 was unique to BTV27-NS4 (Figure 1B).

Table 1. Summary of data from the Y2H screens. The table summarizes the number of interactions
(hits) and cellular interactors that have been identified in our Y2H screens using BTV8 and BTV27-NS4
proteins as baits.

Protein Abreviation BTV8 BTV27 Total Hits UniProtKB ID Protein Name

WTAP 34 34 F1MN80 Wilms’ tumor 1-associated protein
PAWR 19 25 44 F1MMF4 PRKC apoptosis WT1 regulator protein
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Table 1. Cont.

Protein Abreviation BTV8 BTV27 Total Hits UniProtKB ID Protein Name

KANSL2 18 8 26 Q2NL14 KAT8 regulatory NSL complex subunit 2
AATF 23 23 E1BDL9 Apoptosis antagonizing transcription factor
KIF12 18 18 E1BBY6 Kinesin family member 12

MAPK7 14 14 A5PKJ4 Mitogen-activated protein kinase 7
BRD2 7 7 Q32S26 Bromodomain containing 2

LUC7L 6 6 F1MMH3 LUC7 like
CCHCR1 5 5 F1N2Z6 Coiled-coil alpha-helical rod protein 1

Total hits 130 47 177
Total interactors 8 3 9
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Figure 1. Validation of interactions between BTV-NS4 and cellular proteins. (A) Yeast cells expressing
Gal4-BD alone or fused to either BTV8-NS4 or BTV27-NS4 were co-transformed with PCR products
encoding cellular preys in the presence of linearized pPC86 vector to achieve recombinatorial cloning
by gap-repair (GR). For each cellular prey, the shortest (SF) and longest (LF) fragments, identified in
our Y2H screens, were used to retest the bait-prey combinations. -L/-W: synthetic culture medium
depleted of leucine and tryptophan. -L/-W/-H + 3-AT: synthetic culture medium depleted of leucine,
tryptophan, histidine + 5 mM of 3-amino-triazole to test the interaction-dependent transactivation
of HIS3 reporter gene. (B) BTV8 and BTV27-NS4 proteins are represented in blue and pink nodes
indicate bovine (Bos taurus) proteins identified in our screens. Solid lines denote interactions identified
in our Y2H screens and confirmed by GR whereas dashed lines denote interactions only identified
by GR.

3.2. NS4 Interaction with WTAP Is Only Confirmed with BTV8-NS4

Among the nine cellular interactors of BTV-NS4, WTAP has been identified 34 times
corresponding to the highest number of hits in our Y2H screens using BTV-NS4 as bait.
Moreover, the serotype 8-specific binding to WTAP is very interesting and suggests a new
function for BTV-NS4 that we decided to investigate. In order to validate the interaction
with WTAP, GST-tagged BTV-NS4 proteins were co-expressed with 3xFLAG-tagged bovine
WTAP45−396 in HEK-293T cells, and total lysates were purified 48h later with glutathion-
sepharose beads. WTAP45−396 constitutes the longest fragment of WTAP that was largely
identified in our Y2H screen using BTV8-NS4 as bait. As shown in Figure 2A, 3xFLAG
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WTAP45−396 co-purified with BTV8-NS4. Interestingly, BTV27-NS4 failed to do so, thereby
confirming the serotype 8-specificity of this interaction already observed in Y2H. As ex-
pected, full-length bovine WTAP also interacted only with BTV8-NS4 (Figure 2B). Since
BTV27 principally infects goats, we tested if its NS4 protein was able to bind a goat form of
WTAP. Again, only BTV8-NS4 copurified with goat WTAP (Figure 2C). In contrast, NS4
proteins from BTV8 and BTV27 had similar binding capacities for CCHCR1 (Figure 2D)
suggesting that BTV27-NS4 was still functional. Altogether, these results confirmed data
obtained from our Y2H screens where only BTV8-NS4 interacts with WTAP.
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Figure 2. Only BTV8-NS4 interacts with WTAP. HEK-293T cells were transfected with expression
vectors encoding GST alone or fused to the NS4 protein and tested for the interaction with either
WTAP or CCHCR1. To achieve this goal, cells were co-transfected with a pCiNeo-3xFLAG expression
vector encoding the fragment of bovine WTAP starting from position 45 (WTAP45−396, A), the full-
length bovine WTAP (B), the full-length goat WTAP (C) or the full-length bovine CCHCR1 (D). Total
cell lysates were prepared 48 h post-transfection (cell lysate; middle panel), and co-purifications of
indicated cellular proteins were assayed by pull-down using glutathione-sepharose beads (pull-down;
upper panel). GST-tagged NS4 were detected by immunoblotting using anti-GST antibody (pull-
down; lower panel), while indicated cellular proteins were detected with an anti-3xFLAG antibody.
Sizes are shown in kilodaltons (kDa).

3.3. NS4 Interaction with WTAP Does Not Discriminate Classical from Atypical BTV Serotypes

We compared the amino acid (AA) sequences of NS4 proteins from three classical
serotypes (BTV8, BTV1 and BTV4) and three atypical serotypes (BTV27, BTV25 and BTV30).
As shown in Figure 3A, NS4 proteins from BTV8, BTV1 and BTV4 were highly conserved,
with only four AA substitutions (AA6, AA8, AA34 and AA49). Similarly, the AA NS4
sequences were also very conserved between the atypical serotypes. However, NS4 proteins
from BTV27, BTV25 and BTV30 were clearly distinct from BTV8-NS4 in several AA posi-
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tions. This led us to address the question of the specificity of the WTAP interaction between
these two groups of serotypes. Thus, GST-tagged NS4 from BTV8, −1, −4, −27, −25 and
−30 were expressed in HEK-293T cells and purified 48 h later with glutathione-Sepharose
beads. NS4 proteins from BTV8, −1 and −4 interacted with WTAP even if the interaction
with BTV4-NS4 was reduced compared to those of the other NS4 proteins (Figure 3B).
BTV27-NS4 and BTV30-NS4 failed to interact with WTAP whereas BTV25-NS4 had similar
binding capacity for WTAP to that observed for BTV8-NS4 and BTV1-NS4. Therefore, the
interaction between NS4 and WTAP could not be characteristic of the classical group of
BTV serotypes.
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Figure 3. Comparative analysis of NS4 proteins from different BTV serotypes. (A) NS4 protein
sequences from BTV8, BTV1, BTV4, BTV27, BTV25 and BTV30 were aligned with Clustal Omega
version 1.2.3. (B) HEK-293T cells were transfected with expression vectors encoding GST alone or
fused to BTV8-NS4, BTV1-NS4, BTV4-NS4, BTV27-NS4, BTV25-NS4 or BTV30-NS4 as indicated and
tested for interaction with 3xFLAG fused to the full-length bovine WTAP. Total cell lysates were
prepared at 48 h post-transfection (cell lysate; middle panel), and co-purifications of WTAP were
assayed by pulldown using glutathione-Sepharose beads (pulldown; upper panel). Sizes are shown
in kilodaltons (kDa).
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3.4. Mapping of NS4 and WTAP Binding Sites

In order to characterize the NS4 binding interface on WTAP, we generated a full matrix
of NS4 overlapping fragments by PCR and tested their ability to interact with WTAP
in the Y2H system (Figure 4A). Both forward and reverse primers were designed every
66 nucleotides along the NS4 sequence (corresponding to every 22 amino acids) and fused
to appropriate sequences to allow gap-repair recombination with linearized Gal4-BD Y2H
vector. All possible combinations of forward and reverse primers were used to amplify NS4
fragments. Finally, corresponding PCR products with linearized Gal4-BD Y2H vector were
transformed in a yeast strain expressing AD-fused WTAP, and growth on selective medium
supplemented with 5 mM of 3-AT was used to detect potential interactions. Two fragments
encompassing position AA1 to AA55 and AA22 to AA77 of NS4 were sufficient to bind
WTAP (Figure 4A). These results suggest that the WTAP binding motif could be reduced
to a minimal peptide of 34 AAs (BTV-NS422−55) even if both N-terminal and C-terminal
regions seem to be crucial for the interaction with WTAP. Using a similar approach, we then
generated a set of WTAP fragments every 50 AAs (Figure 4B), allowing us to reduce the
NS4 binding motif to a minimal domain encompassing AA151 to AA250 (WTAP151−250).
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Figure 4. Yeast two-hybrid mapping of BTV-NS4 and WTAP binding regions. (A) Fragments of
BTV8-NS4 were generated by PCR using a matrix combination of specific primers and introduced
into Gal4-BD vector by gap-repair in yeast cells expressing WTAP fused to Gal4-AD. (B) In a similar
approach, fragments of WTAP were tested for the interaction with BTV8-NS4. (A,B) -L -W: Selective
medium lacking leucine and tryptophan to control the gap-repair and yeast transformation. -L, -W,
-H + 3-AT: selective medium lacking leucine, tryptophan and histidine and supplemented with 5 mM
of 3-amino-triazole. Vertical and horizontal axes indicate the first and the last amino acid residues of
each fragment tested, respectively. The WTAP and NS4 binding regions that have been identified are
represented in lower diagrams.

3.5. NS422−55 Peptide Determines BTV-NS4 Binding Capacity for WTAP

To confirm that the NS422−55 peptide is responsible for WTAP binding, a chimeric
BTV27-NS422−55BTV8-NS4 protein, which consists to substitute BTV27-NS4 by BTV8-NS4
in the region encompassing residue 22 to 55, was artificially synthesized and tested for
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its potential binding to WTAP. Yeast cells expressing WTAP fused to Gal4-AD were trans-
formed with Gal-BD-BTV8-NS4, -BTV27-NS4 or -BTV27-NS422−55BTV8-NS4 and tested on a
growth medium supplemented with 5 mM 3-AT. As shown in Figure 5A, BTV8-NS4 and
BTV27-NS422−55BTV8-NS4 but not BTV27-NS4 interacted with WTAP in Y2H. In a second ap-
proach, GST-tagged BTV8-NS4, BTV27-NS4 or BTV27-NS422−55BTV8-NS4 were co-expressed
in HEK-293T cells with expression vectors encoding for 3xFLAG-tagged WTAP. After 48 h,
viral proteins were purified with glutathion-sepharose beads, and 3xFLAG-tagged WTAP
was revealed by western-blot analysis. In agreement with data obtained by Y2H, only
BTV8-NS4 and BTV27-NS422−55BTV8-NS4 could bind WTAP even if the interaction was re-
duced with BTV27-NS422−55BTV8-NS4 compared to BTV8-NS4 (Figure 5B). Altogether, these
results demonstrated that the NS422−55 peptide is involved in WTAP binding.
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Figure 5. BTV-NS4 interaction with WTAP is mediated by a peptide encompassing residue 22 to 55.
(A) Yeast cells expressing WTAP fused to Gal4-AD were transformed with a pDEST32 plasmid
encoding BTV8-NS4, BTV27-NS4 or a chimeric BTV27-NS422−55BTV8-NS4 protein, which consist of
substitute BTV27-NS4 by BTV8-NS4 in the region encompassing residue 22 to 55. Synthetic culture
medium depleted of leucine, tryptophan, histidine + 5 mM of 3-amino-triazole (-L/-W/-H + 3-AT)
was used to test the interaction-dependent transactivation of HIS3 reporter gene. (B) HEK-293T cells
were transfected with expression vectors encoding GST alone or fused to BTV8-NS4, BTV27-NS4
or BTV27-NS422−55BTV8-NS4 and tested for interaction with 3xFLAG WTAP. Total cell lysates were
prepared at 48 h post-transfection (cell lysate; middle panel), and co-purifications of WTAP were
assayed by pulldown using glutathione-Sepharose beads (pulldown; upper panel). Sizes are shown
in kilodaltons (kDa).

3.6. WTAP Is Essential for BTV Replication

To test the physiological relevance of WTAP in BTV replication, we used a gene silenc-
ing approach targeting bovine WTAP in Bovine umbilical cord endothelial cells (BUcEC).
BUcEC were transfected with WTAP-specific or non-specific control small interfering RNA
(siRNA) before being infected with BTV8. First, the reduction of WTAP expression had been
confirmed as assessed by RT-qPCR analyses (Figure 6A) and anti-WTAP immunoblotting
(Figure 6B, upper panel). Then, WTAP silencing decreased the expression of BTV-NS3 and
-VP5 (Figure 6B, middle panels) and exhibited significantly lower viral titers compared
to the siRNA control (siCTR, Figure 6C). However, it should be noted that the level of
BTV-segment 1 was not significantly reduced in cells pre-treated with siWTAP compared to
the siCTR condition (Figure 6D) suggesting that WTAP could not have a role at the genome
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replication level. These results support a model where BTV-NS4 interaction with WTAP is
important for BTV replication.
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Figure 6. WTAP silencing alters BTV replication. (A–D) BUcEC were transfected with non-specific
or a WTAP-specific siRNA. One day later, cells were infected with BTV8 (MOI = 0.01). After 24 h,
relative WTAP mRNA and BTV-segment 1 levels were normalized to that of GAPDH (A and D,
respectively). Cell lysates were analyzed by immunoblotting with antibodies against the indicated
proteins (B) and the supernatants were titrated by determining the 50% tissue culture infective doses
(TCID50)/mL (C). Experiments were achieved in triplicate (A,B,D) and with six individual samples
for the viral titers (C). *, p-value (p) < 0.05; **, p < 0.005 and ***, p < 0.0005.

4. Discussion

In this report, we have performed a comparative yeast two-hybrid screening of the
BTV-NS4 protein for identifying 11 interactions, including 8 for BTV8-NS4 and 3 for BTV27-
NS4. From this dataset, each cellular interactor has been retested against BTV8-NS4 and
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BTV27-NS4 by gap-repair into fresh yeasts containing the viral baits. This step is essential
to constitute a subset of interactions confidence. This allowed us to show that four cellular
interactors, including WTAP, were specific to BTV8-NS4. WTAP forms a multiprotein com-
plex with methyltransferase-like 3 protein (METTL3) and methyltransferase-like 14 protein
(METTL14) to mediate N6-methyladenosine (m6A) methylation of RNAs that plays an
important role in multiple stages of RNA life from its folding/structure, maturation, sta-
bility, to messenger RNAs (mRNA) splicing, export, translation, and decay. Therefore,
m6A is involved in diverse biological processes and its dysregulation has been associated
with a wide range of human diseases such as cancer or neurological and autoimmune
disorders [41–43].

The m6A modification has also been found in viral RNA genomes and in viral mRNAs
derived from both RNA and DNA viruses. The role of m6A in viral life cycle has been de-
scribed for several viral families such as the Flaviviridae, Orthomyxoviridae, Paramyxoviridae,
or the Retroviridae (see [44] for a review). However, and to the best of our knowledge, our
model where BTV-NS4 interaction with WTAP is important for BTV replication, would
constitute the first example of a proviral effect of m6A for a virus member of the Reoviridae
family. The m6A modification is involved at multiple steps in the viral life cycle including
the viral genome replication, the stability, splicing or translation of viral mRNAs, and the
encapsidation of genomic RNAs [45]. In our report, we demonstrated that WTAP silencing
led to reduced viral titers and expression of VP5 and NS3 viral proteins whereas our RT-
qPCR data suggested WTAP could not have a role at the genome replication level. Further
investigations are still required to evaluate if NS4, through its interaction with WTAP, acts
directly on the viral life cycle or if it has a general proviral effect in BTV replication.

In addition to acting directly on viruses, m6A has been reported to modulate both the
innate and adaptive immune responses [46]. Innate immunity represents the first line of
defense against viruses where the IFN-α/β constitute the principal mediators that stimulate
the expression of hundreds of IFN-stimulated genes (ISGs). The IFN-α/β signaling path-
way is initiated after the recognition of microbe-associated molecular patterns (MAMPs)
by the pattern recognition receptors (PRRs), such as the RIG-I and MDA5 helicases that
have been described as sensors of the BTV infection [47]. Evolving rapidly under the
pressure of antiviral responses, viruses have developed escape strategies to the IFN-α/β
pathway by preventing the recognition of MAMPs by the PRRs or blocking directly the
IFN-α/β signaling pathway. It has recently been reported that m6A modification in the
viral RNAs of the human metapneumovirus [48] and the hepatitis B and C viruses [49]
can prevent virus-sensing by RIG-I and consequently inhibit the induction of the IFN-α/β
signaling pathway and antiviral immunity. In the context of the vesicular stomatitis virus
(VSV), Qiu et al. have demonstrated that m6A reshapes viral RNA duplex structure and
consequently alters viral RNA sensing by RIG-I and MDA5 [50]. Moreover, m6A has
also been shown to target IFNβ mRNA, enhancing its destabilization and reducing its
production [51,52]. Interestingly, WTAP protein has also been shown to be degraded in
cells infected by VSV, human herpes simplex virus 1 or Sendai virus. Its degradation was
associated with a decrease of the m6A levels of IFN-regulatory factor 3 (IRF3) and interferon
alpha/beta receptor subunit 1 (IFNAR1) mRNAs, leading to translational suppression of
IRF3 and instability of IFNAR1 mRNA and, therefore, reducing the IFN-α/β response [53].
As BTV-NS4 is known to have an important role in counteracting the innate immunity, it
is possible that NS4 protein, through its interaction with WTAP, could manipulate m6A
modification to either prevent viral RNA sensing by RIG-I and MDA5 or regulate directly
signaling molecules of the IFN-α/β signaling pathway. The latter hypothesis is more likely
since the IFN-β gene was strongly upregulated in BTV NS4 deletion mutant (BTV∆NS4)-
infected cells than in BTV wild type-infected cells whereas NS4 protein does not seem to
prevent viral sensing by the PRRs [19]. In this report, authors have also suggested that the
reduced level of IFN-β and other ISGs mRNAs could be due to the host protein shutoff
induced by BTV [54–56] and, possibly by BTV-NS4. As the m6A modification can also
act at both transcriptional and translational levels, our report provides instrumental data
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to further investigate if BTV-NS4 could modulate m6A to induce host protein synthesis
shutdown and/or to target the IFN-β mRNA.

Our findings support a model where BTV-NS4 interacts with WTAP to benefit its
viral replication. To the best of our knowledge, this is the first report demonstrating
WTAP as a target of a viral protein. WTAP interacts with METTL3 and METTL14, and is
required for their localization into nuclear speckles and m6A methyltransferase activity [57].
Interestingly, another study has demonstrated that the METTL3 binding surface could be
reduced to the first 150 AA of WTAP [58]. As we have identified the NS4 binding motif
to a minimal domain encompassing AA151 to AA250 (WTAP151−250), we can reasonably
suppose that METTL3 and BTV-NS4 would not compete for binding to WTAP during BTV
infection. The WTAP binding motif has been identified (BTV-NS422−55) and is carried
by the predicted coiled-coil structure of BTV-NS427−77 [6]. Although the AA sequence of
BTV4-NS4 was almost identical to that of BTV8-NS4, with only one substitution in position
49 of the BTV-NS422−55 region (Figure 3A), BTV4-NS4 was less efficient than BTV8-NS4 to
interact with WTAP. On the other hand, BTV25-NS4 was clearly distinct from BTV8-NS4
in several AA positions but had a similar binding capacity for WTAP to that observed for
BTV8-NS4. In agreement with these data, we have also shown that the interaction with
WTAP is partially restored with a chimeric BTV27-NS422−55BTV8-NS4 protein. Altogether,
these results demonstrate that even if the WTAP binding motif is carried by the BTV-
NS422−55 region, both N-terminal and C-terminal regions are still important to reinforce
the interaction with WTAP.

To date, very few studies have described at the molecular level how viruses ma-
nipulate m6A modification for their own profit and inhibit the host’s antiviral response.
Moreover, only a few interactions between viral and cellular components of m6A have
been described so far. Most viruses, like BTV, infect a broad spectrum of hosts and some
of them are even transmitted by an arthropod vector. Comparative molecular approaches
at viral (between viruses) and host (vertebrate host versus arthropod vector) levels to
investigate m6A modification of both cellular and viral RNAs will be an interesting avenue
for future research.

5. Conclusions

Later on, our comparative Y2H approach will be extended to other viral proteins
encoded by different strains of BTV but also by other orbiviruses. It would provide a better
understanding of virus-host molecular interactions at multiple levels: viral (between or-
biviruses) and host (mammals and arthropod vectors). Such interactions would determine
the ability of a virus to cross species barriers (interspecies transmissions) and adapt to a
new host. By comparing virus-host interactomes obtained from different BTV strains, we
will be able to characterize protein interactions that would be either conserved throughout
this virus or specific to highly virulent strains, explaining the virulence/pathogenesis
associated with its infection. It would also be a great benefit to combine the Y2H system
with other high-throughput standardized proteomic approaches to provide a better and
global understanding of the cellular network of orbiviruses.
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